Asymptotic performance of the quadratic discriminant function to skewed training samples

نویسندگان

  • Atinuke Adebanji
  • Michael Asamoah-Boaheng
  • Olivia Osei-Tutu
چکیده

This study investigates the asymptotic performance of the quadratic discriminant function (QDF) under skewed training samples. The main objective of this study is to evaluate the performance of the QDF under skewed distribution considering different sample size ratios, varying the group centroid separators and the number of variables. Three populations [Formula: see text] with increasing group centroid separator function were considered. A multivariate normal distributed data was simulated with MatLab R2009a. There was an increase in the average error rates of the sample size ratios 1:2:2 and 1:2:3 as the total sample size increased asymptotically in the skewed distribution when the centroid separator increased from 1 to 3. The QDF under the skewed distribution performed better for the sample size ratio 1:1:1 as compared to the other sampling ratios and under centroid separator [Formula: see text].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness of the Quadratic Discriminant Function to correlated and uncorrelated normal training samples.

This study investigates the asymptotic performance of the Quadratic Discriminant Function (QDF) under correlated and uncorrelated normal training samples. This paper specifically examines the effect of correlation, uncorrelation considering different sample size ratios, number of variables and varying group centroid separators ([Formula: see text], [Formula: see text]) on classification accurac...

متن کامل

Noisy replication in skewed binary classi cation

Skewed binary classi cation problems arise in estimating the “success” probabilities of new observations due to sparse “successes” and numerous “failures” in a given training data set. Previously Lee (1999) showed that adding small normal noise to replicate the “successes” in the training set could slightly improve estimates in several common classi cation models, namely, nearest neighbor, neur...

متن کامل

Blind quadratic and time-frequency based detectors from training data

Time-frequency based methods, particularly quadratic (Cohen's-class) representations, are often considered for detection in applications ranging from sonar to machine monitoring. We propose a method of obtaining near-optimal quadratic detectors directly from training data using Fisher's optimal linear discriminant to design a quadratic detector. This detector is optimal in terms of Fisher's sca...

متن کامل

تحلیل ممیز غیرپارامتریک بهبودیافته برای دسته‌بندی تصاویر ابرطیفی با نمونه آموزشی محدود

Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...

متن کامل

Sparse Quadratic Discriminant Analysis For High Dimensional Data

Many contemporary studies involve the classification of a subject into two classes based on n observations of the p variables associated with the subject. Under the assumption that the variables are normally distributed, the well-known linear discriminant analysis (LDA) assumes a common covariance matrix over the two classes while the quadratic discriminant analysis (QDA) allows different covar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016